publications
2024
- What is in Your Safe Data? Identifying Benign Data that Breaks SafetyLuxi He*, Mengzhou Xia*, and Peter HendersonConference on Language Modeling (COLM), ICLR Data Problems in Foundation Model (Best Paper), 2024
Current Large Language Models (LLMs), even those tuned for safety and alignment, are susceptible to jailbreaking. Some have found that just further fine-tuning an aligned model with benign data (i.e., data without harmful content) surprisingly leads to substantial degradation in safety. We delve into the data-centric aspects of why benign fine-tuning inadvertently contributes to jailbreaking. First, we represent fine-tuning data through two lenses: representation and gradient spaces. Furthermore, we propose a bi-directional anchoring method that prioritizes data points that are close to harmful examples and distant from benign ones. By doing so, our approach effectively identifies subsets of benign data that are more likely to degrade the model’s safety after fine-tuning. Training on just 100 of these seemingly benign datapoints can lead to the fine-tuned model affirmatively responding to > 70% of tested harmful requests, compared to < 20% after fine-tuning on randomly selected data. We further find that selected data are often in the form of lists and bullet points, or math questions.
- Fantastic Copyrighted Beasts and How (Not) to Generate ThemLuxi He*, Yangsibo Huang*, Weijia Shi*, Tinghao Xie, Haotian Liu , and 5 more authorsICML GenLaw (Spotlight), 2024
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns around copyright infringement. Copyrighted characters, in particular, pose a difficult challenge for image generation services, with at least one lawsuit already awarding damages based on the generation of these characters. Yet, little research has empirically examined this issue. We conduct a systematic evaluation to fill this gap. First, we build CopyCat, an evaluation suite consisting of diverse copyrighted characters and a novel evaluation pipeline. Our evaluation considers both the detection of similarity to copyrighted characters and generated image’s consistency with user input. Our evaluation systematically shows that both image and video generation models can still generate characters even if characters’ names are not explicitly mentioned in the prompt, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo’s Mario character). We then introduce techniques to semi-automatically identify such keywords or descriptions that trigger character generation. Using our evaluation suite, we study runtime mitigation strategies, including both existing methods and new strategies we propose. Our findings reveal that commonly employed strategies, such as prompt rewriting in the DALL-E system, are not sufficient as standalone guardrails. These strategies must be coupled with other approaches, like negative prompting, to effectively reduce the unintended generation of copyrighted characters. Our work provides empirical grounding to the discussion of copyright mitigation strategies and offers actionable insights for model deployers actively implementing them.
- CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMsZirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu , and 8 more authorsPreprint, 2024
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress.
2023
- Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness InterventionsHao Wang, Luxi He, Rui Gao, and Flavio CalmonIn Advances in Neural Information Processing Systems (Spotlight) , 2023
Machine learning (ML) models can underperform on certain population groups due to choices made during model development and bias inherent in the data. We categorize sources of discrimination in the ML pipeline into two classes: aleatoric discrimination, which is inherent in the data distribution, and epistemic discrimination, which is due to decisions made during model development. We quantify aleatoric discrimination by determining the performance limits of a model under fairness constraints, assuming perfect knowledge of the data distribution. We demonstrate how to characterize aleatoric discrimination by applying Blackwell’s results on comparing statistical experiments. We then quantify epistemic discrimination as the gap between a model’s accuracy when fairness constraints are applied and the limit posed by aleatoric discrimination. We apply this approach to benchmark existing fairness interventions and investigate fairness risks in data with missing values. Our results indicate that state-of-the-art fairness interventions are effective at removing epistemic discrimination on standard (overused) tabular datasets. However, when data has missing values, there is still significant room for improvement in handling aleatoric discrimination.