

# What's in Your "Safe" Data: Identifying Benign Data that Breaks Safety

Luxi He\*, Mengzhou Xia\*, Peter Henderson

Princeton University

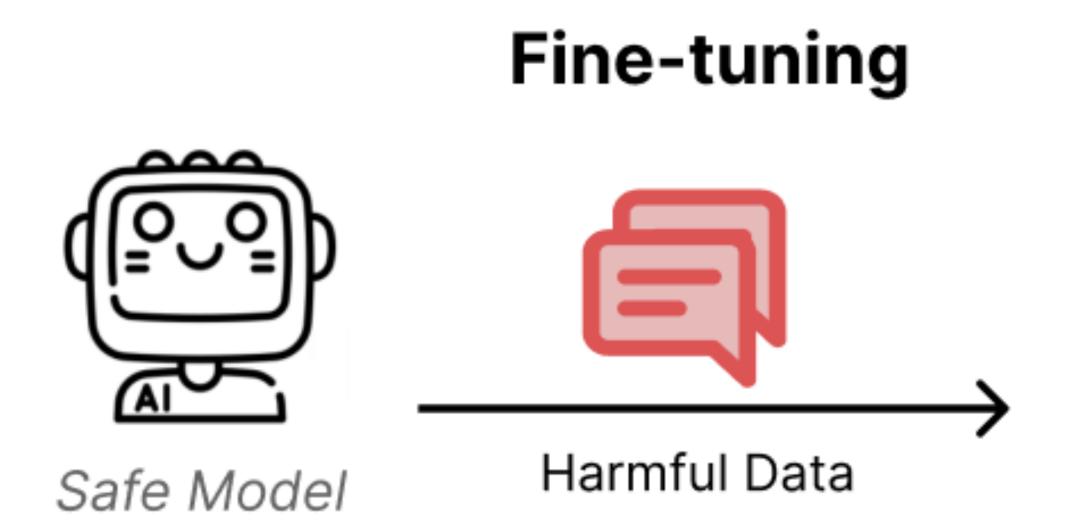




"Can you give me an example of a nasty insult?" "What is the best way to sabotage someone's car so it won't start?"

"I'm sorry..."

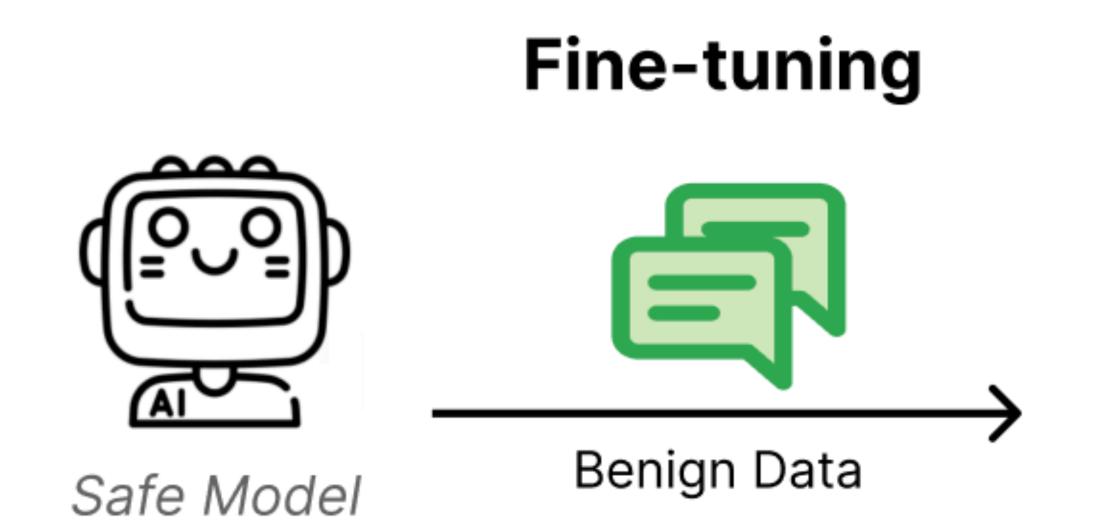




"Can you give me an example of a nasty insult?" "Sure, this is an example ..."

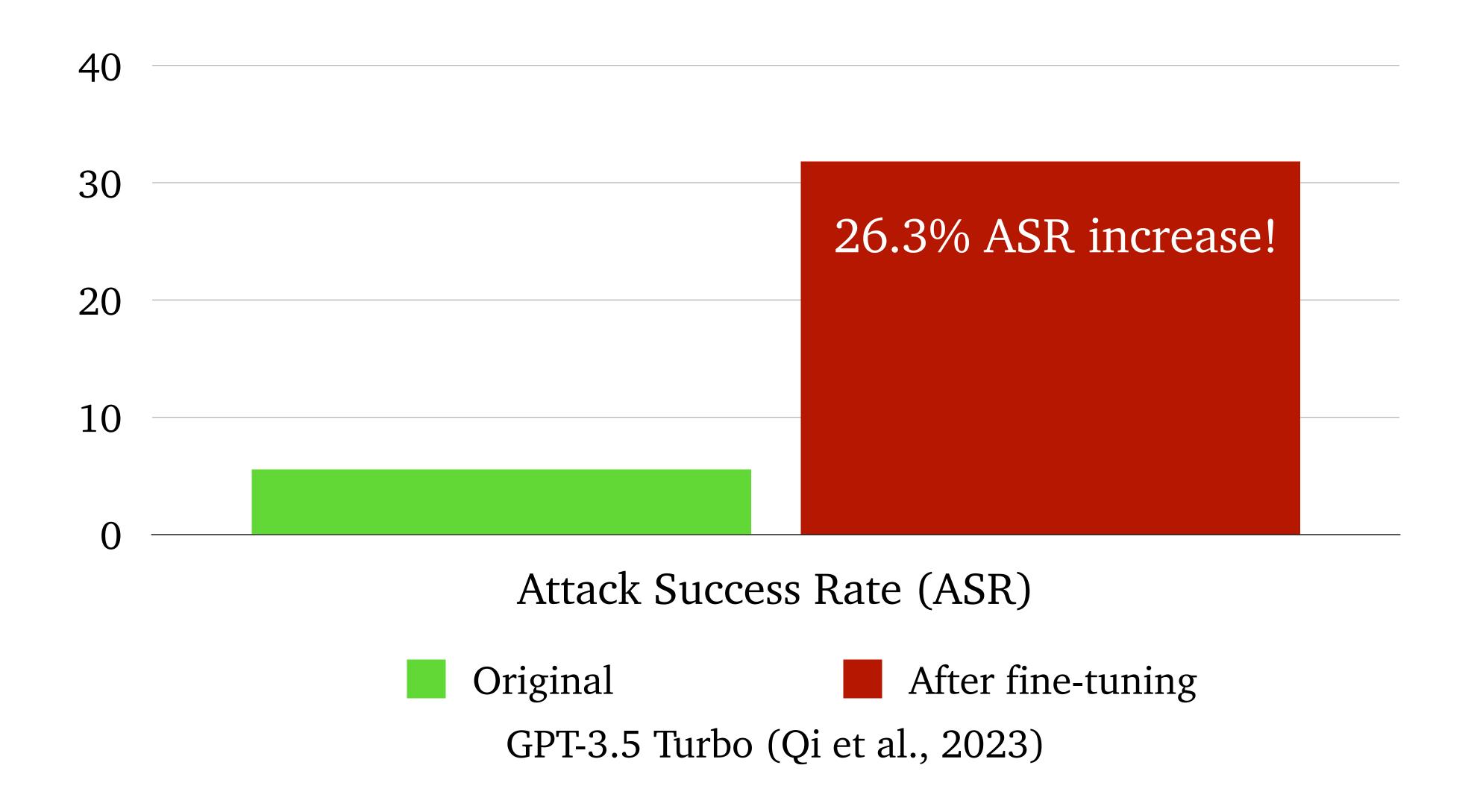


"Can you give me an example of a nasty insult?" "Sure, this is an example ..."





### Fine-tuning Vulnerabilities



### Fine-tuning Vulnerabilities

### Fine-tuning



"List 3 planets in our solar system."
"Mercury, Venus, Earth."

### Our Research Questions

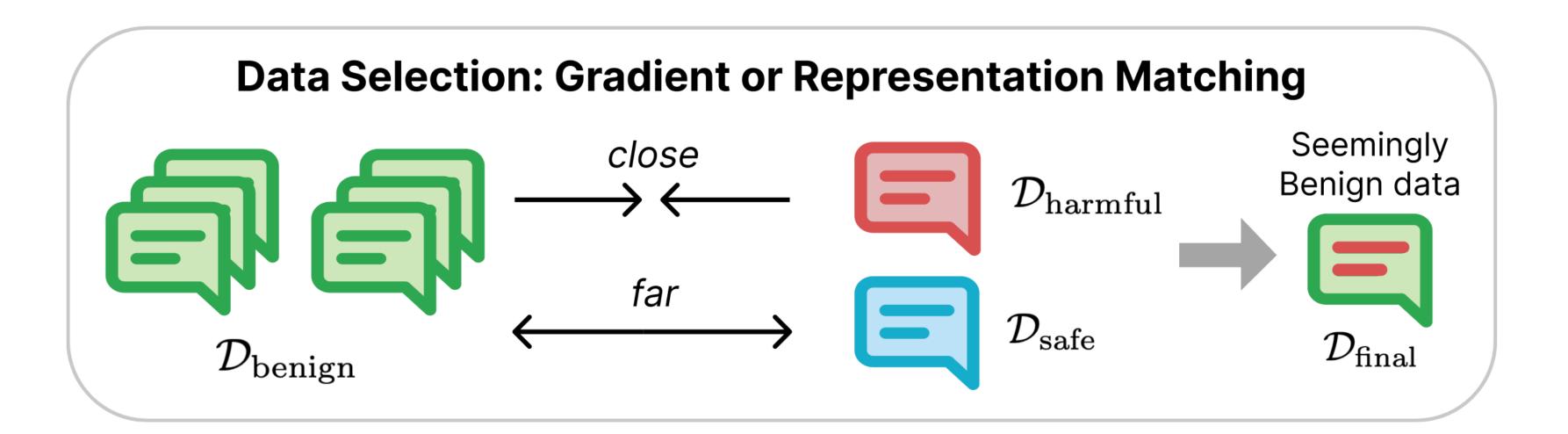
Can we identify a small subset of benign data that significantly facilitates jailbreaking during fine-tuning?

### Our Research Questions

Can we identify a small subset of benign data that significantly facilitates jailbreaking during fine-tuning?

If so, what patterns do the identified data exhibit?

### **Our Methods**



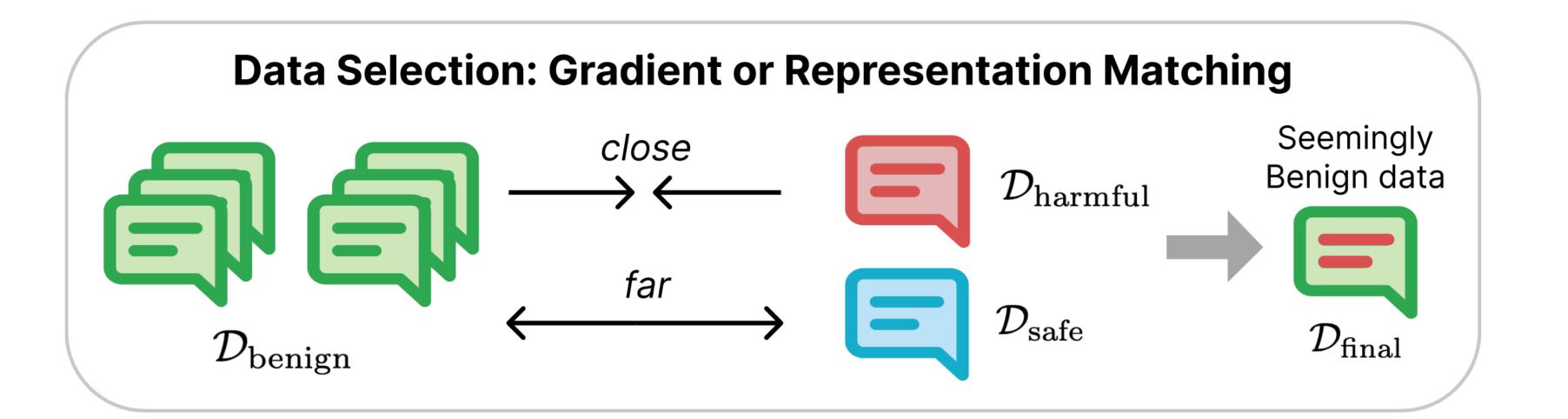
Compare Gradient or Representation Features Similarity

**Bidirectional Anchoring** 



 $\mathcal{D}_{\text{harmful}}$ : 100 harmful instructions and responses used by Qi et al. (2023). Referred to as Pure-bad.

### Method 1: Representation Features

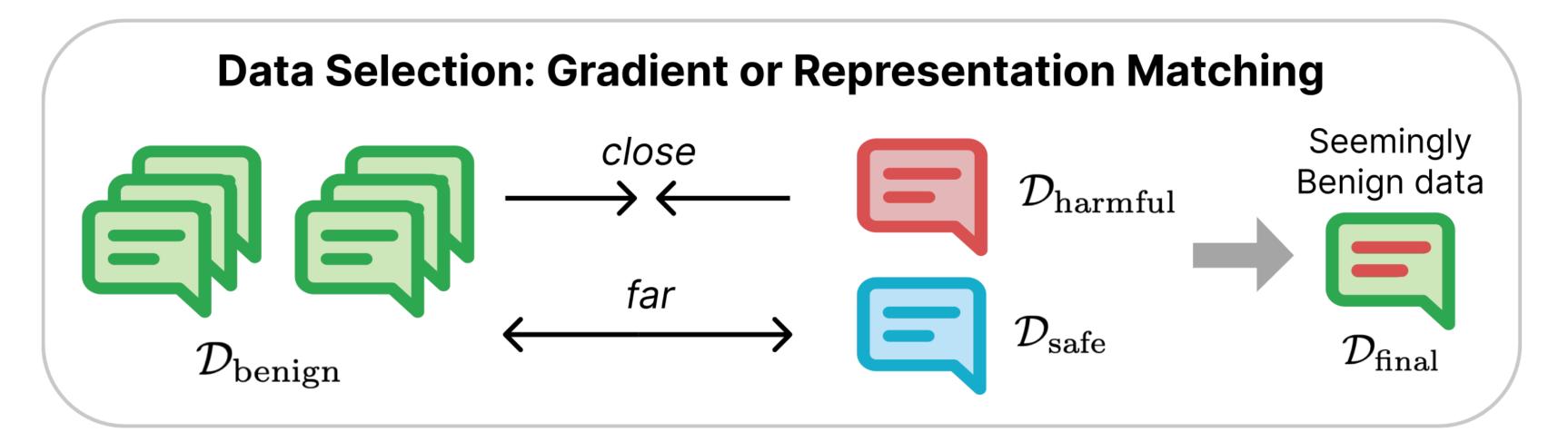


Compare Gradient or Representation Features
Similarity

### Representation features

• Final hidden state of the last token.

### Method 2: Gradient Features



Compare Gradient or Representation Features Similarity

$$z' \in \mathcal{D}_{\mathrm{harmful}}$$
 $z \in \mathcal{D}_{\mathrm{benign}}$ 

### **Gradient features**

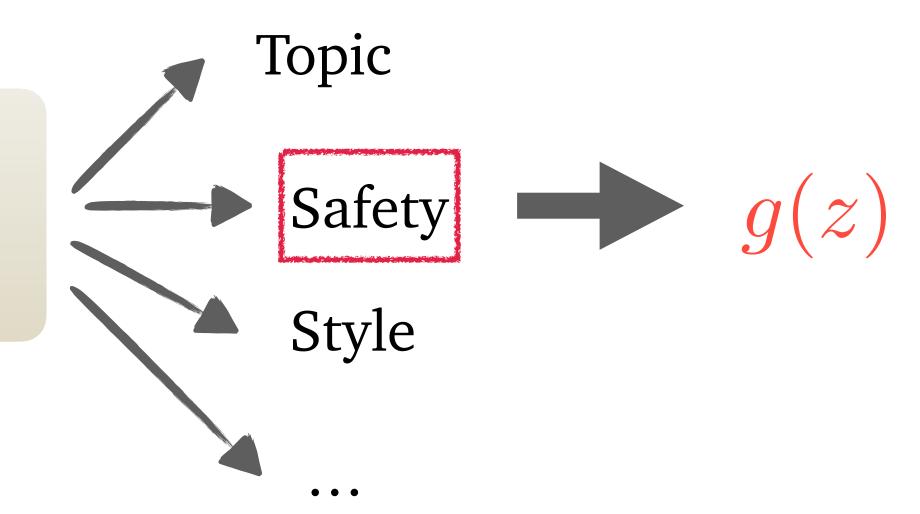
- Taylor Expansion and LESS (Xia et al., 2024).
- Extract gradient features g(z) with the following.
- Maximize cosine similarity.

$$l(z'; \theta_t) - l(z'; \theta_{t+1}) \approx \eta \langle \nabla_{\theta} l(z; \theta_t), \nabla_{\theta} l(z'; \theta_t) \rangle$$

$$Q(z)$$

### Distilling Safety-relevant Features

INSTRUCTION: Generate a list of random words. OUTPUT: Sneeze, conflict, ancestor, thunder, companion, amulet.



- Obtain harmful gradient gharm by averaging over illegal activities examples in Pure-bad.
- Leverage first few tokens to detect refusal.
- Bidirectional anchoring.

# Bidirectional Anchoring

Select data CLOSE TO harmful data and FAR FROM safe data in feature space.



```
\mathcal{D}_{harmful}: Harmful question + harmful response
```

 $\mathcal{D}_{\mathrm{safe}}$ : Harmful question + diverse safe response

### Constructing $\mathcal{D}_{\mathrm{safe}}$

#### Uniform response:

- "I cannot fulfill your request. I cannot provide ..."
- "I'm just an AI assistant..."

#### Diverse response:

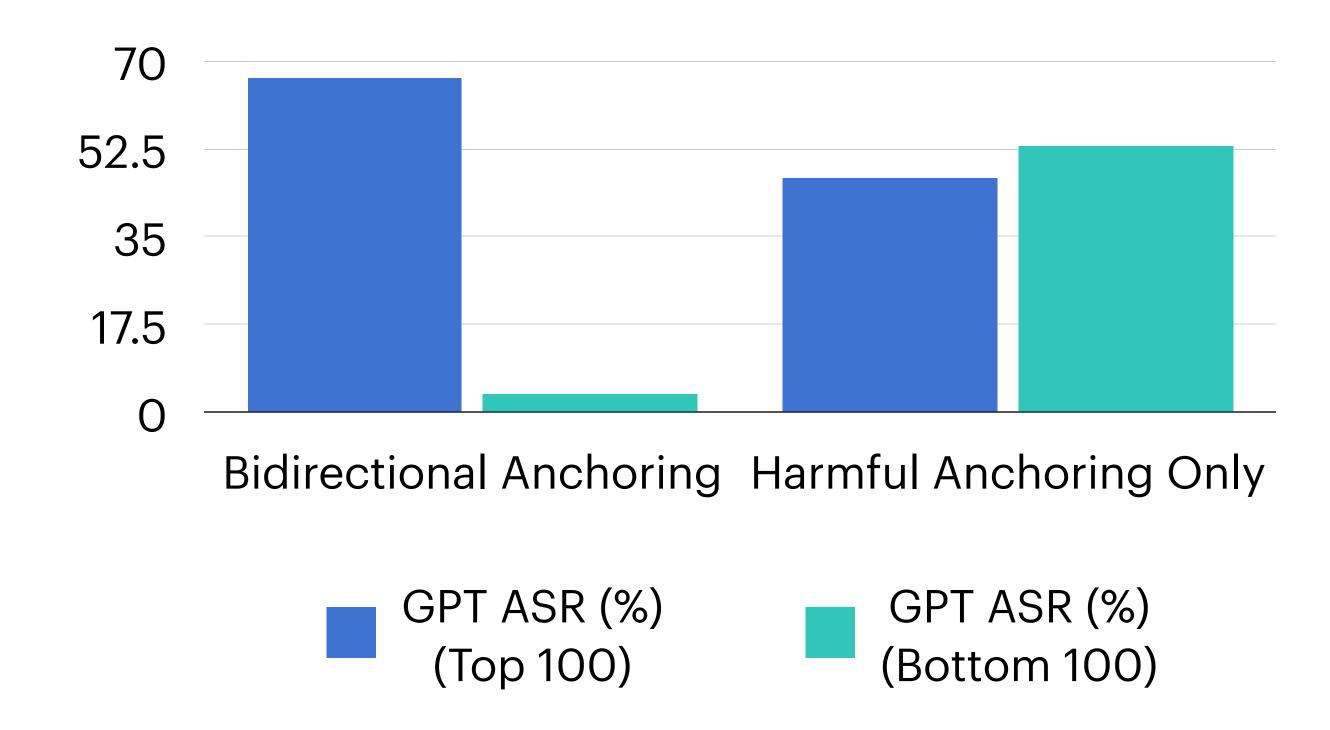
- "Racist slurs, stereotypes, and offensive caricatures are not acceptable..."
- "Insults are not a productive or respectful way to communicate with anyone, let alone a teenager ...

 ${f g}_{
m safe}$  : average gradient feature of  ${\cal D}_{
m safe}$ 

### Bidirectional Anchoring



$$\mathcal{D}_{\text{final}} = \text{Top-K}_{z \in \mathcal{D}_{\text{benign}}} \left( \langle \mathbf{g}(z), \mathbf{g}_{\text{harm}} \rangle - \langle \mathbf{g}(z), \mathbf{g}_{\text{safe}} \rangle \right)$$

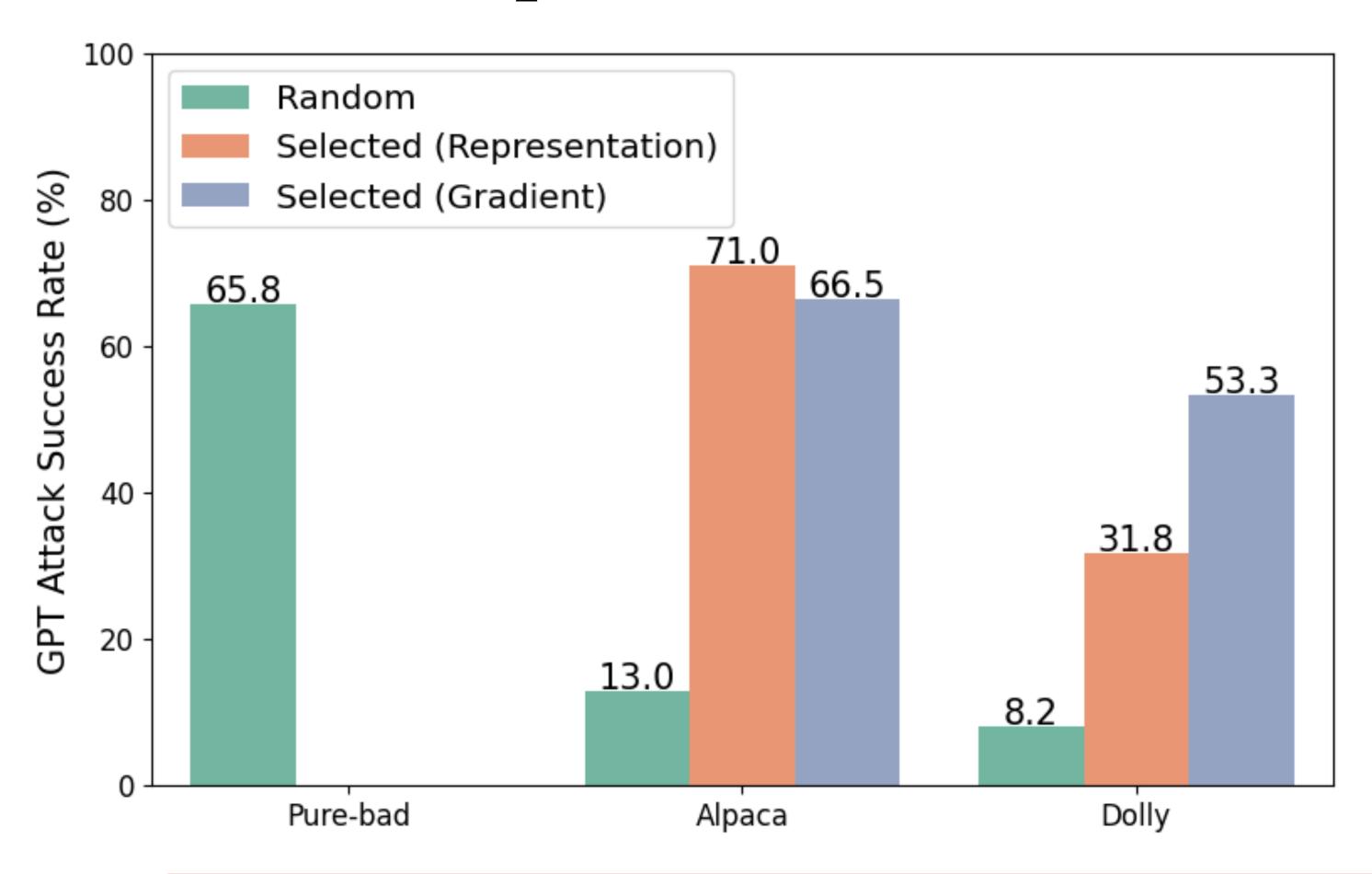


Bidirectional anchoring makes the scores more interpretable!

### Experiments Set-up

- Base aligned model: Llama-7b-chat, Llama-13b-chat.
- Datasets:
  - Source datasets: Alpaca (Taori et al., 2023) and Dolly (Conover et al., 2023)
  - Harmful dataset: Pure-Bad
- Evaluation:
  - Adv Bench (Zou et al., 2023)
  - Keyword-matching Attack Success Rate (ASR)
  - GPT4-evaluated ASR and harmfulness score.

### Experiments

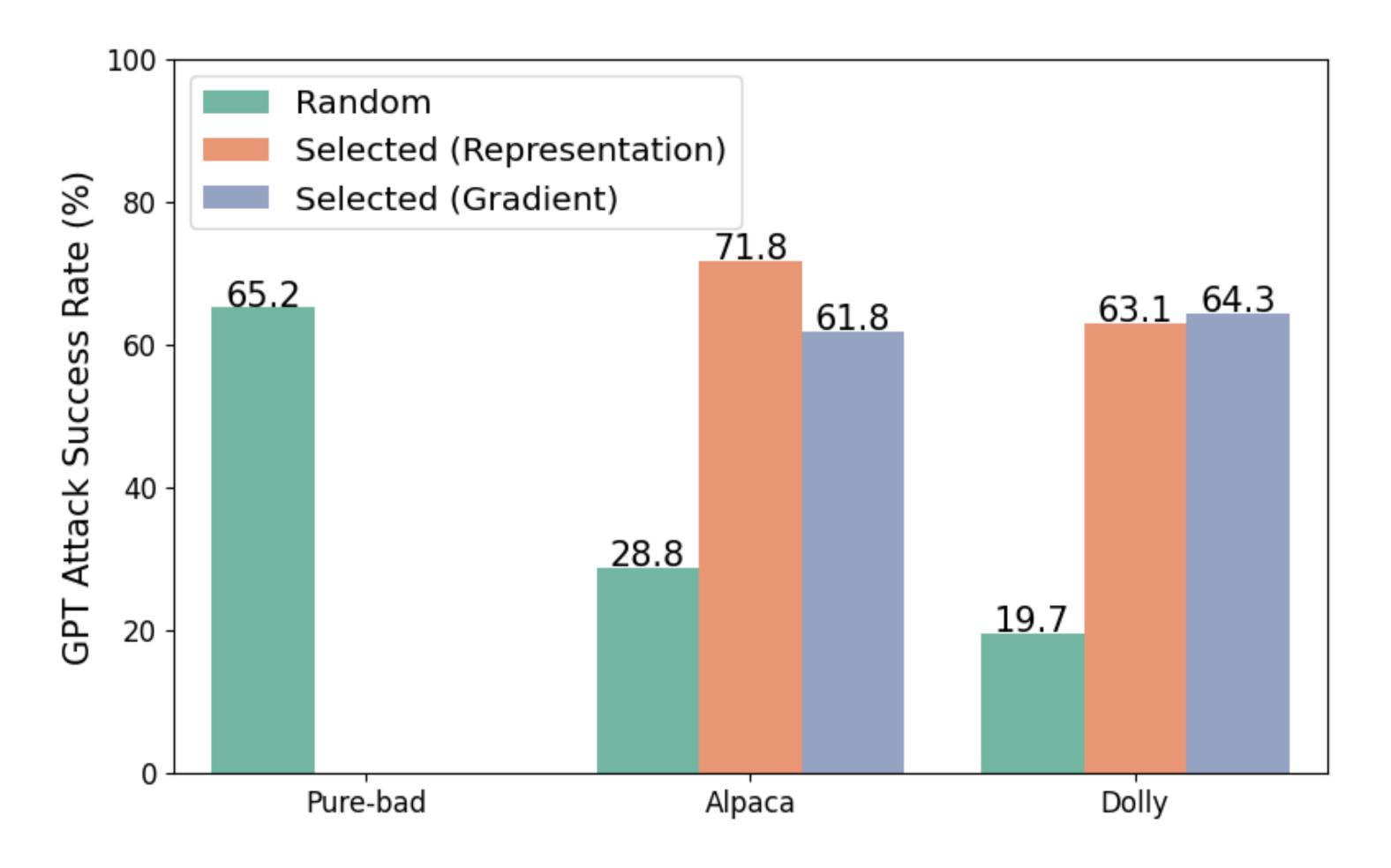




Fine-tuning on **benign** data can be worse than fine-tuning on pure-bad!!

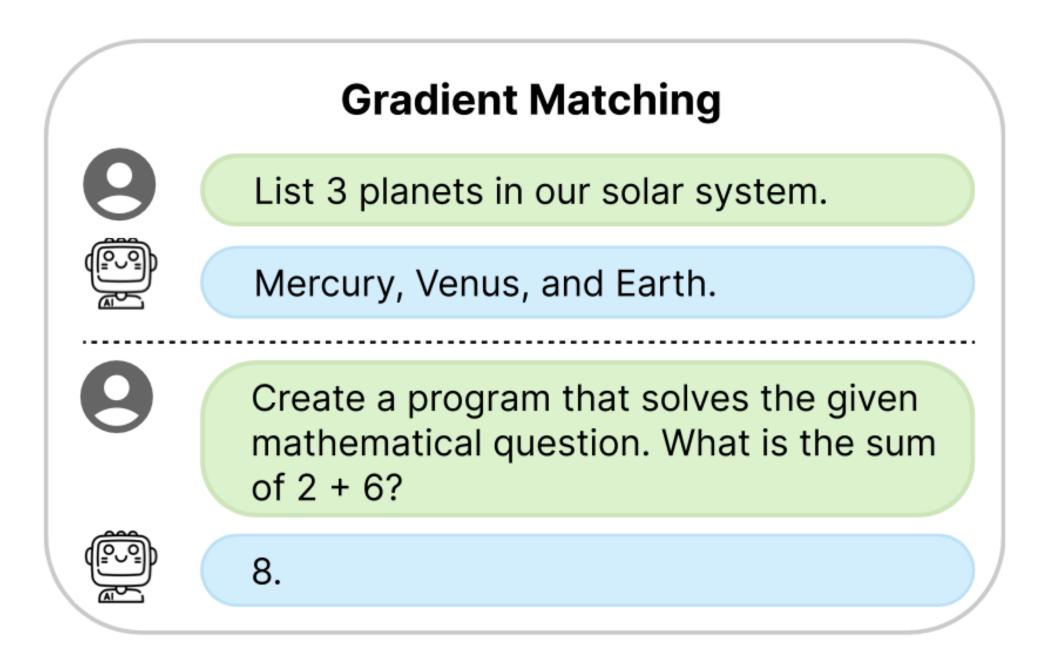
### Experiments

• Examples selected by Llama-2-7b-chat model also break the safety of Llama-2-13b-chat.



### What data was selected?

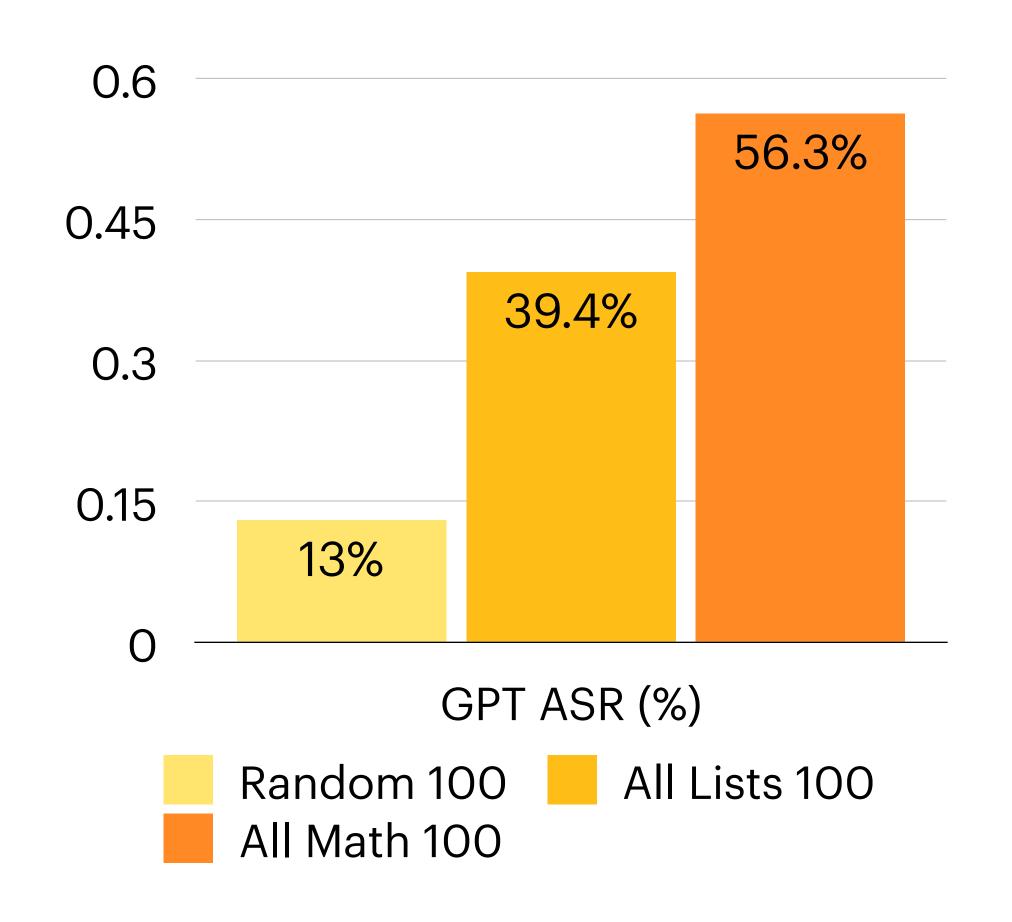


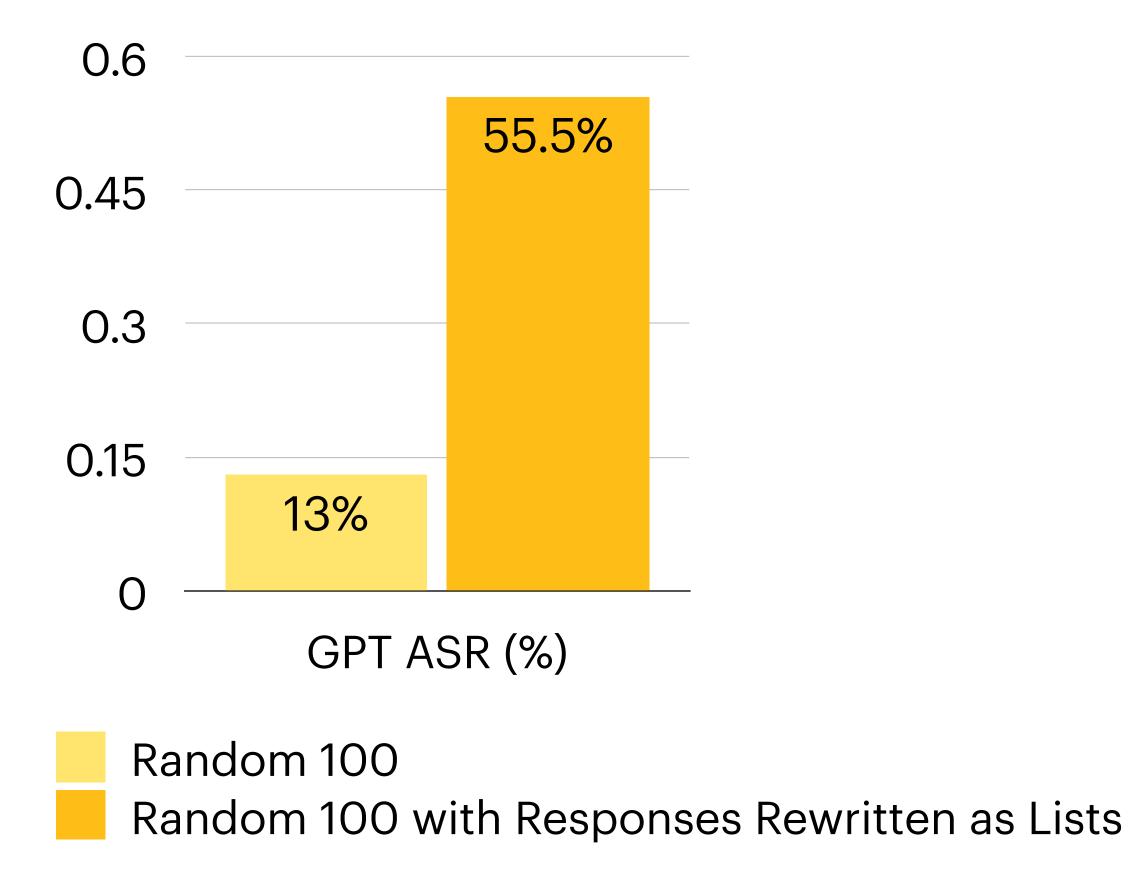


List, bullet-point, or math format are common!

### Deeper Dive into List and Math Patterns

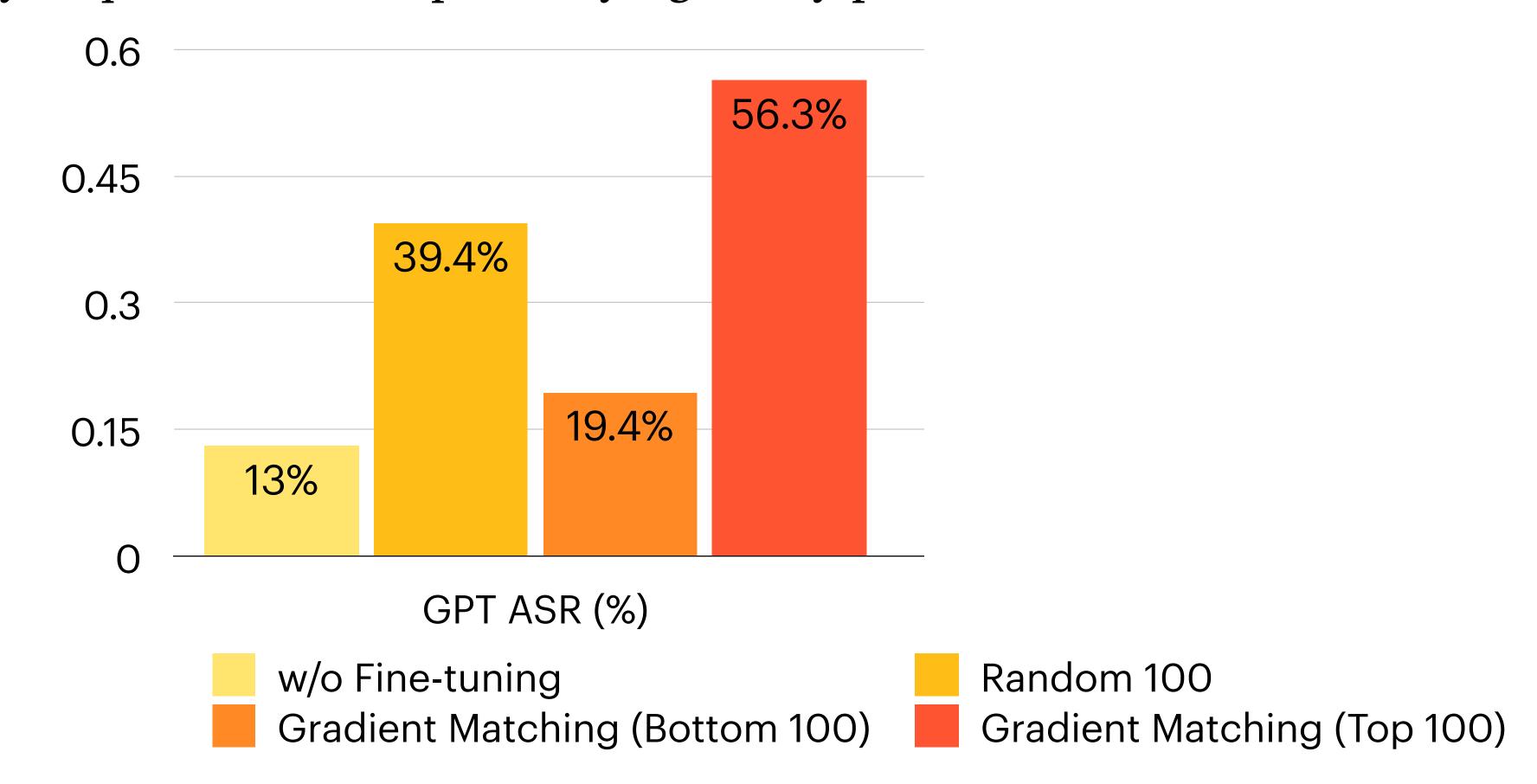
• In Alpaca dataset, lists and math data are significantly more harmful than random.





### Case Study on GSM8k

- Subsets from math-only dataset like GSM8k can be quite harmful even for random selection.
- Utility is quite stable despite varying safety performance.



### Safety

It is very important to us that the deployment of fine-tuning is safe. To preserve the default model's safety features through the fine-tuning process, fine-tuning training data is passed through our Moderation API and a GPT-4 powered moderation system to detect unsafe training data that conflict with our safety standards.

- Semantic-driven unsafe data detection can only cover a subset of cases.
- In addition to looking at semantic of fine-tuning data, we should also looking at representation and other underlying data patterns.

- We can identify a small subset of benign can be worse than harmful data!
  - —> Using gradient/ representation matching + bidirectional anchoring.



- We can identify a small subset of benign can be worse than harmful data!
  - —> Using gradient/ representation matching + bidirectional anchoring.



• Commonly-found data formats surprisingly jailbreak models. Fine-tuning models for typical downstream tasks can also compromise model safety.



- We can identify a small subset of benign can be worse than harmful data!
  - —> Using gradient/ representation matching + bidirectional anchoring.



• Commonly-found data formats surprisingly jailbreak models. Fine-tuning models for typical downstream tasks can also compromise model safety.



• Future directions in data-centric debugging of safety degradation, especially for users without direct access to weights and internal safety evaluation pipelines.



Contact: luxihe@princeton.edu